I was wondering sometime ago how to start to explain a big bunch of theory about containerization and orchestrate such containers strategy with Kubernetes in a practical way. I know how it works, i know the architecture and the most important benefits of application modernization using Kubernetes. But, why not to play with MiniKube a little bit and explain some takeaways about Application Modernization most important actors like Kubernetes?.

Therefore, it´s good to set up some examples in your LAB so you can play with the commands as well as with the concepts. We will be using MiniKube, as i mentioned before, this is a software for test Kubernetes with an “all-in-one” architecture. A master node and a worker node together in my case for Windows. So i started downloading minikube.exe from here.

To summarize, you have a Master Node or some Master Nodes which will be in charge of managing several Worker Nodes. Developers will deploy applications images on some Pods with usually just one Container inside (they can have more than a container but it is not usual). A container is like a small package with an application, its libraries and some dependences needed to run isolated from a Operating System (So you don´t need a licence for a container). Pods are the smallest compute unit within Kubernetes and share networking and storage to work together with some kind of data in the same Worker Node or not, as they can be distributed between Worker Nodes. You can kill or create pods base on your application requirements. They are ephemeral in nature and depends on how many should be run during a period of time to solve a task or support an specific service for their application.

For Users all this scenario, we have already explained, is absolutely transparent. For example, AirBnB use Kubernetes because the company can spread clusters in several regions with the public cloud. Those clusters are scalable. So when there is a “World trade center” in Barcelona, thousand of queries go to AirBnB kubernetes services to respond with some specific results. Indeed, depending on how much people are asking for accommodation, Kubernetes clusters will create and replicate worker nodes, even replicate pods to several worker nodes to improve the user experiences and answer asap so the user doesn´t leave their web site.
Step back to our lab, we start our MiniKube using the Hyper-V driver.. We´ll set up a fresh Linux VM on Hyper-V with all the components needed to test the previous scenario we showed above.

We can check the components status. The API server is an endpoint where all the cluster components are communicated. Scheduler (It will detect which pod to place on which node based on the resource requirements), Controller manager (handles node failures, replicating or maintaining the correct number of pods) and other worker node component communicate with the API server. Also, below pay attention to Kubelet (in charge of the containers on each node and it talks to API server as well). Kubeconfig has all the credentials and access to connect to your Kubernetes cluster. Here, it is needed because we will connect our “Kubectl” command to create or kill pods in a minute..

So, here we are…Please also see we have a Kube-Proxy component..it is use to distribute and balance traffic to services to each worker node, so in backend several pods are providing information..it is like a referee in soccer.

Just to recap we have Minikube in a Windows 2019 with Hyper-v Server running with all the components needed to test some Kubectl commands and create a simple pod in charge of provide a single query to its service.

I´ve created a pod which is just going to wait for information (in JSON format)..

Forward the port to 8080, so i can connect to the endpoint..

Previously i have installed a “Postman” Trial, you know, developers love this tool. Moreover, they need it to verify that the information or data they are sending (usually in JSON format) or asking to an endpoint is consistent and works as they expect. Here, below i send some data in JSON format and, as you can see, the pod accepts it with a “200” Code, OK.

In the next post we will see AKS and why it has a lot of opportunities to be a very important game player in the application modernization market.
Enjoy the journey to the cloud with me…see you then in the next post.